✨ feat(database_optimizer): 添加数据库优化工程师智能体功能
- 使用 DeepSeek 模型进行智能分析 - 集成 PostgreSQL MCP 服务器工具 - 加载数据库知识库 - 提供数据库优化建议
This commit is contained in:
175
数据库优化工程师.py
175
数据库优化工程师.py
@@ -1,96 +1,109 @@
|
|||||||
if __name__ == "__main__":
|
#!/usr/bin/env python3
|
||||||
"""
|
"""
|
||||||
## 背景
|
PostgreSQL 数据库优化工程师智能体
|
||||||
|
|
||||||
我有一个`postgresql`数据库,现在需要一个专业的数据库优化工程师,来帮我看下设计是否合理,以及如何优化.
|
功能:
|
||||||
|
- 使用 DeepSeek 模型进行智能分析
|
||||||
|
- 集成 PostgreSQL MCP 服务器工具
|
||||||
|
- 加载数据库知识库
|
||||||
|
- 提供数据库优化建议
|
||||||
|
"""
|
||||||
|
|
||||||
## 目标
|
import os
|
||||||
|
from typing import Optional
|
||||||
|
from dataclasses import dataclass
|
||||||
|
from dotenv import load_dotenv
|
||||||
|
|
||||||
这个数据库优化工程师智能体应该具备以下能力:
|
from agno.agent import Agent
|
||||||
|
from agno.models.deepseek import DeepSeek
|
||||||
|
from agno.knowledge.pdf import PDFKnowledgeBase
|
||||||
|
from agno.vectordb.lancedb import LanceDb, SearchType
|
||||||
|
from agno.embedder.openai import OpenAIEmbedder
|
||||||
|
from agno.knowledge.combined import CombinedKnowledgeBase
|
||||||
|
from agno.tools.mcp import MCPTools
|
||||||
|
from mcp import StdioServerParameters
|
||||||
|
|
||||||
- [ ] 使用`claude3.7`作为模型(相当于拥有一个聪明的大脑,总是能够做出正确的决策)
|
@dataclass
|
||||||
- [ ] 精通关系型数据库系统的理论知识以及`postgresql`的实现细节(知识库)
|
class DatabaseOptimizerConfig:
|
||||||
- [ ] 能够使用`postgresql mcp server`来分析现有数据库设计(行为)
|
"""数据库优化器配置"""
|
||||||
|
pdf_path: str = "D:\\Sources\\DONGJAK-TOOLS\\pdfs\\Database Fundamentals.pdf"
|
||||||
|
db_connection: str = "postgresql://postgres:postgres@192.168.1.7:5432/postgres"
|
||||||
|
model_id: str = "deepseek-chat"
|
||||||
|
vector_db_path: str = "tmp/lancedb"
|
||||||
|
|
||||||
"""
|
class DatabaseOptimizer:
|
||||||
# 然后在notebook中加载
|
"""PostgreSQL 数据库优化引擎"""
|
||||||
from dotenv import load_dotenv
|
|
||||||
|
def __init__(self, config: Optional[DatabaseOptimizerConfig] = None):
|
||||||
|
self.config = config or DatabaseOptimizerConfig()
|
||||||
|
self._load_environment()
|
||||||
|
self.knowledge_base = self._setup_knowledge_base()
|
||||||
|
self.postgres_tools = self._setup_postgres_tools()
|
||||||
|
self.agent = self._create_agent()
|
||||||
|
|
||||||
# 加载当前目录下的.env文件
|
def _load_environment(self):
|
||||||
load_dotenv()
|
"""加载环境变量"""
|
||||||
from agno.agent import Agent, RunResponse # noqa
|
load_dotenv()
|
||||||
from agno.models.deepseek import DeepSeek
|
|
||||||
from agno.knowledge.pdf_url import PDFUrlKnowledgeBase
|
|
||||||
from agno.knowledge.pdf import PDFKnowledgeBase
|
|
||||||
from agno.vectordb.lancedb import LanceDb, SearchType
|
|
||||||
from agno.embedder.openai import OpenAIEmbedder
|
|
||||||
from agno.knowledge.combined import CombinedKnowledgeBase
|
|
||||||
from agno.tools.mcp import MCPTools
|
|
||||||
from mcp import StdioServerParameters
|
|
||||||
|
|
||||||
# Create a knowledge base of PDFs from URLs
|
def _setup_knowledge_base(self) -> CombinedKnowledgeBase:
|
||||||
# pdf_url_kb = PDFUrlKnowledgeBase(
|
"""设置知识库"""
|
||||||
# urls=["https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf"],
|
local_pdf_kb = PDFKnowledgeBase(
|
||||||
# # Use LanceDB as the vector database and store embeddings in the `recipes` table
|
path=self.config.pdf_path,
|
||||||
# vector_db=LanceDb(
|
vector_db=LanceDb(
|
||||||
# table_name="recipes",
|
table_name="database_fundamentals",
|
||||||
# uri="tmp/lancedb",
|
uri=self.config.vector_db_path,
|
||||||
# search_type=SearchType.vector,
|
search_type=SearchType.vector,
|
||||||
# embedder=OpenAIEmbedder(id="text-embedding-3-small"),
|
embedder=OpenAIEmbedder(id="text-embedding-3-small"),
|
||||||
# ),
|
),
|
||||||
# )
|
)
|
||||||
# Create Local PDF knowledge base
|
|
||||||
local_pdf_kb = PDFKnowledgeBase(
|
knowledge_base = CombinedKnowledgeBase(
|
||||||
path="D:\\Sources\\DONGJAK-TOOLS\\pdfs\\Database Fundamentals.pdf",
|
sources=[local_pdf_kb],
|
||||||
vector_db=LanceDb(
|
vector_db=LanceDb(
|
||||||
table_name="database_fundamentals",
|
table_name="combined_documents",
|
||||||
uri="tmp/lancedb",
|
uri=self.config.vector_db_path,
|
||||||
search_type=SearchType.vector,
|
search_type=SearchType.vector,
|
||||||
embedder=OpenAIEmbedder(id="text-embedding-3-small"),
|
embedder=OpenAIEmbedder(id="text-embedding-3-small"),
|
||||||
),
|
),
|
||||||
)
|
)
|
||||||
|
knowledge_base.load()
|
||||||
|
return knowledge_base
|
||||||
|
|
||||||
# Combine knowledge bases
|
def _setup_postgres_tools(self) -> MCPTools:
|
||||||
knowledge_base = CombinedKnowledgeBase(
|
"""设置 PostgreSQL 工具"""
|
||||||
sources=[
|
server_params = StdioServerParameters(
|
||||||
local_pdf_kb,
|
command="cmd",
|
||||||
],
|
args=[
|
||||||
vector_db=LanceDb(
|
"/c",
|
||||||
table_name="combined_documents",
|
"npx",
|
||||||
uri="tmp/lancedb",
|
"-y",
|
||||||
search_type=SearchType.vector,
|
"@modelcontextprotocol/server-postgres",
|
||||||
embedder=OpenAIEmbedder(id="text-embedding-3-small"),
|
self.config.db_connection,
|
||||||
),
|
],
|
||||||
)
|
env={},
|
||||||
# Load the knowledge base: Comment after first run as the knowledge base is already loaded
|
)
|
||||||
knowledge_base.load()
|
return MCPTools(server_params=server_params)
|
||||||
|
|
||||||
server_params = StdioServerParameters(
|
def _create_agent(self) -> Agent:
|
||||||
command="cmd", # 或 "uvx",取决于你的安装方式
|
"""创建智能体"""
|
||||||
args=[
|
return Agent(
|
||||||
"/c",
|
model=DeepSeek(id=self.config.model_id),
|
||||||
"npx",
|
|
||||||
"-y",
|
|
||||||
"@modelcontextprotocol/server-postgres",
|
|
||||||
"postgresql://postgres:postgres@192.168.1.7:5432/postgres",
|
|
||||||
],
|
|
||||||
env={}, # 可选的环境变量
|
|
||||||
)
|
|
||||||
with MCPTools(server_params=server_params) as postgres_server:
|
|
||||||
# 使用mcp_tools
|
|
||||||
|
|
||||||
agent = Agent(
|
|
||||||
model=DeepSeek(id="deepseek-chat"),
|
|
||||||
markdown=True,
|
markdown=True,
|
||||||
knowledge=knowledge_base,
|
knowledge=self.knowledge_base,
|
||||||
search_knowledge=True,
|
search_knowledge=True,
|
||||||
show_tool_calls=True,
|
show_tool_calls=True,
|
||||||
tools=[postgres_server],
|
tools=[self.postgres_tools],
|
||||||
)
|
)
|
||||||
|
|
||||||
# Get the response in a variable
|
def analyze_database(self, query: str, stream: bool = True):
|
||||||
# run: RunResponse = agent.run("Share a 2 sentence horror story")
|
"""分析数据库"""
|
||||||
# print(run.content)
|
with self.postgres_tools:
|
||||||
|
self.agent.print_response(query, stream=stream)
|
||||||
|
|
||||||
# Print the response in the terminal
|
def main():
|
||||||
agent.print_response("看下aq这个数据库", stream=True)
|
"""主入口函数"""
|
||||||
|
optimizer = DatabaseOptimizer()
|
||||||
|
optimizer.analyze_database("看下aq这个数据库")
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
|
|||||||
Reference in New Issue
Block a user