feat(database_optimizer): 添加数据库优化工程师智能体功能

- 使用 DeepSeek 模型进行智能分析
- 集成 PostgreSQL MCP 服务器工具
- 加载数据库知识库
- 提供数据库优化建议
This commit is contained in:
2025-03-31 01:00:28 +08:00
parent 356041051c
commit f280258527

View File

@@ -1,26 +1,21 @@
if __name__ == "__main__":
#!/usr/bin/env python3
"""
## 背景
我有一个`postgresql`数据库,现在需要一个专业的数据库优化工程师,来帮我看下设计是否合理,以及如何优化.
## 目标
这个数据库优化工程师智能体应该具备以下能力:
- [ ] 使用`claude3.7`作为模型(相当于拥有一个聪明的大脑,总是能够做出正确的决策)
- [ ] 精通关系型数据库系统的理论知识以及`postgresql`的实现细节(知识库)
- [ ] 能够使用`postgresql mcp server`来分析现有数据库设计(行为)
PostgreSQL 数据库优化工程师智能体
功能:
- 使用 DeepSeek 模型进行智能分析
- 集成 PostgreSQL MCP 服务器工具
- 加载数据库知识库
- 提供数据库优化建议
"""
# 然后在notebook中加载
import os
from typing import Optional
from dataclasses import dataclass
from dotenv import load_dotenv
# 加载当前目录下的.env文件
load_dotenv()
from agno.agent import Agent, RunResponse # noqa
from agno.agent import Agent
from agno.models.deepseek import DeepSeek
from agno.knowledge.pdf_url import PDFUrlKnowledgeBase
from agno.knowledge.pdf import PDFKnowledgeBase
from agno.vectordb.lancedb import LanceDb, SearchType
from agno.embedder.openai import OpenAIEmbedder
@@ -28,69 +23,87 @@ if __name__ == "__main__":
from agno.tools.mcp import MCPTools
from mcp import StdioServerParameters
# Create a knowledge base of PDFs from URLs
# pdf_url_kb = PDFUrlKnowledgeBase(
# urls=["https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf"],
# # Use LanceDB as the vector database and store embeddings in the `recipes` table
# vector_db=LanceDb(
# table_name="recipes",
# uri="tmp/lancedb",
# search_type=SearchType.vector,
# embedder=OpenAIEmbedder(id="text-embedding-3-small"),
# ),
# )
# Create Local PDF knowledge base
@dataclass
class DatabaseOptimizerConfig:
"""数据库优化器配置"""
pdf_path: str = "D:\\Sources\\DONGJAK-TOOLS\\pdfs\\Database Fundamentals.pdf"
db_connection: str = "postgresql://postgres:postgres@192.168.1.7:5432/postgres"
model_id: str = "deepseek-chat"
vector_db_path: str = "tmp/lancedb"
class DatabaseOptimizer:
"""PostgreSQL 数据库优化引擎"""
def __init__(self, config: Optional[DatabaseOptimizerConfig] = None):
self.config = config or DatabaseOptimizerConfig()
self._load_environment()
self.knowledge_base = self._setup_knowledge_base()
self.postgres_tools = self._setup_postgres_tools()
self.agent = self._create_agent()
def _load_environment(self):
"""加载环境变量"""
load_dotenv()
def _setup_knowledge_base(self) -> CombinedKnowledgeBase:
"""设置知识库"""
local_pdf_kb = PDFKnowledgeBase(
path="D:\\Sources\\DONGJAK-TOOLS\\pdfs\\Database Fundamentals.pdf",
path=self.config.pdf_path,
vector_db=LanceDb(
table_name="database_fundamentals",
uri="tmp/lancedb",
uri=self.config.vector_db_path,
search_type=SearchType.vector,
embedder=OpenAIEmbedder(id="text-embedding-3-small"),
),
)
# Combine knowledge bases
knowledge_base = CombinedKnowledgeBase(
sources=[
local_pdf_kb,
],
sources=[local_pdf_kb],
vector_db=LanceDb(
table_name="combined_documents",
uri="tmp/lancedb",
uri=self.config.vector_db_path,
search_type=SearchType.vector,
embedder=OpenAIEmbedder(id="text-embedding-3-small"),
),
)
# Load the knowledge base: Comment after first run as the knowledge base is already loaded
knowledge_base.load()
return knowledge_base
def _setup_postgres_tools(self) -> MCPTools:
"""设置 PostgreSQL 工具"""
server_params = StdioServerParameters(
command="cmd", # 或 "uvx",取决于你的安装方式
command="cmd",
args=[
"/c",
"npx",
"-y",
"@modelcontextprotocol/server-postgres",
"postgresql://postgres:postgres@192.168.1.7:5432/postgres",
self.config.db_connection,
],
env={}, # 可选的环境变量
env={},
)
with MCPTools(server_params=server_params) as postgres_server:
# 使用mcp_tools
return MCPTools(server_params=server_params)
agent = Agent(
model=DeepSeek(id="deepseek-chat"),
def _create_agent(self) -> Agent:
"""创建智能体"""
return Agent(
model=DeepSeek(id=self.config.model_id),
markdown=True,
knowledge=knowledge_base,
knowledge=self.knowledge_base,
search_knowledge=True,
show_tool_calls=True,
tools=[postgres_server],
tools=[self.postgres_tools],
)
# Get the response in a variable
# run: RunResponse = agent.run("Share a 2 sentence horror story")
# print(run.content)
def analyze_database(self, query: str, stream: bool = True):
"""分析数据库"""
with self.postgres_tools:
self.agent.print_response(query, stream=stream)
# Print the response in the terminal
agent.print_response("看下aq这个数据库", stream=True)
def main():
"""主入口函数"""
optimizer = DatabaseOptimizer()
optimizer.analyze_database("看下aq这个数据库")
if __name__ == "__main__":
main()