✨ feat(database_optimizer): 支持异步数据库分析
- 新增异步主函数以提升性能 - 重构知识库加载及智能体创建逻辑 - 添加客户端会话以连接MCP服务器
This commit is contained in:
112
数据库优化工程师.py
112
数据库优化工程师.py
@@ -9,6 +9,7 @@ PostgreSQL 数据库优化工程师智能体
|
||||
- 提供数据库优化建议
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import os
|
||||
from typing import Optional
|
||||
from dataclasses import dataclass
|
||||
@@ -21,19 +22,23 @@ from agno.vectordb.lancedb import LanceDb, SearchType
|
||||
from agno.embedder.openai import OpenAIEmbedder
|
||||
from agno.knowledge.combined import CombinedKnowledgeBase
|
||||
from agno.tools.mcp import MCPTools
|
||||
from mcp import StdioServerParameters
|
||||
from mcp.client.stdio import stdio_client
|
||||
from mcp import ClientSession, StdioServerParameters
|
||||
|
||||
|
||||
@dataclass
|
||||
class DatabaseOptimizerConfig:
|
||||
"""数据库优化器配置"""
|
||||
|
||||
pdf_path: str = "D:\\Sources\\DONGJAK-TOOLS\\pdfs\\Database Fundamentals.pdf"
|
||||
db_connection: str = "postgresql://postgres:postgres@192.168.1.7:5432/postgres"
|
||||
model_id: str = "deepseek-chat"
|
||||
vector_db_path: str = "tmp/lancedb"
|
||||
|
||||
|
||||
class DatabaseOptimizer:
|
||||
"""PostgreSQL 数据库优化引擎"""
|
||||
|
||||
|
||||
def __init__(self, config: Optional[DatabaseOptimizerConfig] = None):
|
||||
self.config = config or DatabaseOptimizerConfig()
|
||||
self._load_environment()
|
||||
@@ -41,34 +46,6 @@ class DatabaseOptimizer:
|
||||
self.postgres_tools = self._setup_postgres_tools()
|
||||
self.agent = self._create_agent()
|
||||
|
||||
def _load_environment(self):
|
||||
"""加载环境变量"""
|
||||
load_dotenv()
|
||||
|
||||
def _setup_knowledge_base(self) -> CombinedKnowledgeBase:
|
||||
"""设置知识库"""
|
||||
local_pdf_kb = PDFKnowledgeBase(
|
||||
path=self.config.pdf_path,
|
||||
vector_db=LanceDb(
|
||||
table_name="database_fundamentals",
|
||||
uri=self.config.vector_db_path,
|
||||
search_type=SearchType.vector,
|
||||
embedder=OpenAIEmbedder(id="text-embedding-3-small"),
|
||||
),
|
||||
)
|
||||
|
||||
knowledge_base = CombinedKnowledgeBase(
|
||||
sources=[local_pdf_kb],
|
||||
vector_db=LanceDb(
|
||||
table_name="combined_documents",
|
||||
uri=self.config.vector_db_path,
|
||||
search_type=SearchType.vector,
|
||||
embedder=OpenAIEmbedder(id="text-embedding-3-small"),
|
||||
),
|
||||
)
|
||||
knowledge_base.load()
|
||||
return knowledge_base
|
||||
|
||||
def _setup_postgres_tools(self) -> MCPTools:
|
||||
"""设置 PostgreSQL 工具"""
|
||||
server_params = StdioServerParameters(
|
||||
@@ -82,28 +59,71 @@ class DatabaseOptimizer:
|
||||
],
|
||||
env={},
|
||||
)
|
||||
return MCPTools(server_params=server_params)
|
||||
# Create a client session to connect to the MCP server
|
||||
with stdio_client(server_params) as (read, write):
|
||||
with ClientSession(read, write) as session:
|
||||
agent = create_filesystem_agent(session)
|
||||
|
||||
def _create_agent(self) -> Agent:
|
||||
"""创建智能体"""
|
||||
return Agent(
|
||||
model=DeepSeek(id=self.config.model_id),
|
||||
markdown=True,
|
||||
knowledge=self.knowledge_base,
|
||||
search_knowledge=True,
|
||||
show_tool_calls=True,
|
||||
tools=[self.postgres_tools],
|
||||
)
|
||||
# Run the agent
|
||||
agent.print_response(message, stream=True)
|
||||
return MCPTools(server_params=server_params)
|
||||
|
||||
def analyze_database(self, query: str, stream: bool = True):
|
||||
"""分析数据库"""
|
||||
with self.postgres_tools:
|
||||
self.agent.print_response(query, stream=stream)
|
||||
|
||||
def main():
|
||||
"""主入口函数"""
|
||||
optimizer = DatabaseOptimizer()
|
||||
optimizer.analyze_database("看下aq这个数据库")
|
||||
|
||||
async def main():
|
||||
load_dotenv()
|
||||
"""设置知识库"""
|
||||
local_pdf_kb = PDFKnowledgeBase(
|
||||
path="D:\\Sources\\DONGJAK-TOOLS\\pdfs\\Database Fundamentals.pdf",
|
||||
vector_db=LanceDb(
|
||||
table_name="database_fundamentals",
|
||||
uri="tmp/lancedb",
|
||||
search_type=SearchType.vector,
|
||||
embedder=OpenAIEmbedder(id="text-embedding-3-small"),
|
||||
),
|
||||
)
|
||||
|
||||
knowledge_base = CombinedKnowledgeBase(
|
||||
sources=[local_pdf_kb],
|
||||
vector_db=LanceDb(
|
||||
table_name="combined_documents",
|
||||
uri="tmp/lancedb",
|
||||
search_type=SearchType.vector,
|
||||
embedder=OpenAIEmbedder(id="text-embedding-3-small"),
|
||||
),
|
||||
)
|
||||
knowledge_base.load()
|
||||
|
||||
server_params = StdioServerParameters(
|
||||
command="cmd",
|
||||
args=[
|
||||
"/c",
|
||||
"npx",
|
||||
"-y",
|
||||
"@modelcontextprotocol/server-postgres",
|
||||
"postgresql://postgres:postgres@192.168.1.7:5432/postgres",
|
||||
],
|
||||
env={},
|
||||
)
|
||||
# Create a client session to connect to the MCP server
|
||||
async with stdio_client(server_params) as (read, write):
|
||||
async with ClientSession(read, write) as session:
|
||||
postgres_tools = MCPTools(session=session)
|
||||
await postgres_tools.initialize()
|
||||
agent = Agent(
|
||||
model=DeepSeek(id="deepseek-chat"),
|
||||
markdown=True,
|
||||
knowledge=knowledge_base,
|
||||
search_knowledge=True,
|
||||
show_tool_calls=True,
|
||||
tools=[postgres_tools],
|
||||
)
|
||||
await agent.aprint_response("看下aq这个数据库", stream=True)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
asyncio.run(main())
|
||||
|
||||
Reference in New Issue
Block a user